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AND ORTHOGONAL LATIN SQUARES

A. HEDAYAT AND E. SEIDEN

The object of this paper is three-fold. First, it puts the theory
of “sum composition” of Latin squares and orthogonal Latin
squares in its most precise form. Second, it compiles and unifies
previous results which have appeared in technical reports and in
proceedings of a conference in Italy, which are not readily availa-
ble. Finally, it presents some new results in this area.

The research relates to the following question: given two Latin squares
L, and L, of order n; and n,(n, = n,), respectively, in how many ways (if
any at all) can one compose L, and L, in order to obtain a Latin square L;
of order m, where m is a function of n; and n, only? It is well known that L;
= L, ® L,is a Latin square of order n, n, irrespective of the combinatorial
structures of L, and L,. The theory produces a Latin square L; of order n,
+ n, (thus the name “sum composition™), provided L, has a certain com-
binatorial structure. Although this method does not work for all pairs of
Latin squares, it has an immediate application in the construction of
orthogonal Latin squares with certain interesting and useful combinatorial
structures, including those of order 4t + 2, ¢ = 2. As will be seen this
method is easy, and is simpler than other known methods for the con-
struction of orthogonal Latin squares of order 4¢ + 2 (see [1]). Perhaps the
idea of sum composition can be extended to other combinatorial structures
and designs.

In §2 preliminary concepts and definitions are presented, which are
then used in the following sections. Section 3 develops the basic idea of the
sum composition of Latin squares and points out the usefulness of these
concepts. Section 4 introduces the idea of horizontal and vertical projec-
tions of a transversal on rows and columns. It also introduces the idea of
“capturing” a lost transversal. It contains two lemmas for capturing a
transversal by horizontal and vertical projections. These lemmas are con-
sidered to be the fundamental lemmas in sum composition. In §5 a tech-
nique is developed which forms a basis for the construction of an O(n, 2)
via sum composition of an O(n,, 2) based on GF(n, ) and an arbitrary O(n,,
2). Section 6 introduces a family of O(n, 2) with a sub O(n,, 2) by sum
composition of an O(n,, 2) based on GF(n,) and an arbitrary O(n,, 2)
where n, hits the upper bound namely [n, /2], where [a] denotes the integer
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part of a. Section 7 presents a family of O(n, 2) with a sub O(3, 2) by sum
composition of an O(n,, 2) based on GF(n, ) of odd order and an O(3, 2).
The lowest order which 7, can take on in the present theory is 3 (also see
§10). In §8 a family of O(p* + 4, 2) with sub O(4, 2) is constructed. Section
9 concerns itself with the construction of a family of O(p" + 5, 2) with sub
O(5, 2). The order of the Latin squares composed in this case is always of
the form 4¢ 4 2. Section 10 discusses extensions of the theory in two
different ways. Several unsolved problems are also stated.

2. Preliminaries. Let 2 be a set of cardinality n = 1. Let L be a Latin
square of order n on 2.

DerFINITION 2.1. L is said to have a transversal if there exists a
collection of n cells in L with the properties that: (i) no row and column of
L contains more than one cell of this collection, (ii) the entries of these cells
exhaust the set 2.

Of course, not every Latin square has a transversal.

DerFINITION 2.2. L is said to have ¢ parallel transversals if L
contains ¢ transversals, no two of which have any cell in common.

DerFINITION2.3. LetL,, L,, ..., L, be r Latin squares of order non Z.
Then a collection of »n cells is said to form a common transversal for these r
Latin squares if the collection is a transversal for each of these r Latin
squares.

DErFINITION 2.4. A set of r Latin squares of order » on 2 is said to
contain ¢ parallel common transversals if they have ¢ common transversals
which are pairwise parallel.

Hereafter, the symbol O(n, r) denotes a set of r pairwise orthogonal
Latin squares of order n. The notation, L, 1 L,, indicates that L, is
orthogonal to L,. It is easy to see that:

LeMMA 2.1.  An O(n, r) exists if and only if an O(n, r — 1) with n
common parallel transversals exists.

LEMMA 2.2. An O(n, n — 1) has no common transversal.
ExampLE 2.1. Let 2 = {a, b, ¢, d}. Then the underlined and par-

enthesized cells form two common parallel transversals for the following
04, 2).
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3. Sum composition of Latin squares. In order to make the reading
of this paper independent of our previous papers[4], [S], [6], and [8], the sum
composition technique for the construction of Latin squares of order n; +
n, from Latin squares of orders n; and n, having certain combinatorial
structures is reviewed. Sum composition has numerous applications:

(1) Itcan be used for the construction of Latin squares of order n; +
n, with sub-Latin squares of order n, for all n; and n, < n, except for (n,,
n) = (2 1), (2, 2), (6, 5) and (6, 6).

(i) It has an immediate application for the construction of pairs of
orthogonal Latin squares of order n; + n,, including those of the form 4z +
2, with sub-orthogonal Latin squares of order n,.

(ii)) Latin squares and orthogonal Latin squares constructed via sum
composition enjoy certain combinatorial properties which are useful for
the construction of several useful experimental designs for successive stages
(see Hedayat, Parker and Federer [7]).

(iv) Hedayat [3] has utilized this method and has produced a Latin
square of order 10 which is orthogonal to its transpose.

(v) Finally, Federer [2] has pointed out several other applications of
sum composition.

Consider an m X m square B with a Latin square L of order n < min
its top left corner. In the sequel the following concepts will be needed:

(i) the vertical projection of a given transversal in L on the rth row (r
> n) of B means placing in the (7, j) cell of this row, that element of the
given transversal which appears in the jth columnof L,j = 1,2, ... , n.

(ii) Similarly, the horizontal projection of a given transversal on the
tth column, ¢ > n, of B means placing in the (i, #) cell of this column that
element of the given transversal which appears in the ithrow of L, i = 1, 2,

.
The following example clarifies the above concepts.

ExampLE 3.1. Let L and B be the following squares.
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and B =

h

Il
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N = | W

The underlined cells form a transversal for L. The vertical and horizontal

projections of this transversal on the 6th row and 5th column of B produce
the following square.

1213 2
2131
3012 3
30211

The method of sum composition will be described next. Let 2, and =,
be two non-intersecting sets of cardinalities n, and n,, respectively, n; = n,.
Let L, be a Latin square of order n; with n, parallel transversals on ;.
Note that this is always possible except for (n;, n,) = (2, 1), (2, 2), (6, 5),
and (6, 6). Let L, be a Latin square of order n, on =,. L, is not required to
have any specific combinatorial structure. Let C;be anm X m,m = n; +
ny, square containing L, and L, in the following fashion:

Ll
C =

L,

Project horizontally and vertically the n, transversals of L, on the last n,
columns and rows of C; in any arbitrary manner. Note that there are n,!
choices for the projections on the rows and n,! choices for the projections
on the columns. Call the resulting square C,. Now replace the », entries of
each transversal by a fixed element of =, such that no two transversals are
being replaced by the same element of =, . Call the resulting square L;. The
above process guarantees that L, is a Latin square of order n; + nyon2; U
2.
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The preceding steps can be elucidated via an example.

ExampLE3.2. LetZ, = {1,2,3},2, = {a, b} and

1 @ 3 a b
Li=2 3 () and L, =
3 1 2 b a

Note that the underlined and parenthesized cells form two parallel trans-
versals for L. Then

L@ 3
2 13|
C = G| 12
a b
b a
and a possible choice of
1121 3 2 1

G = Gl 121312

Observe that the underlined transversal has been projected on the fourth
row and on the fifth column and the parenthesized transversal has been
projected on the fifth row and on the fourth column. Now replace the
entries of the underlined transversal by a and the parenthesized ones by b
to obtain
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alb|3]|2]1
2lalb|1]3
Ly = bll1|a|3]2
113(2|alb
312|1}|b}a

4. Fundamental lemmas in sum composition. Let =, = GF(n,). Let
B(x) be a square of order n, with xa; + a;in its (i, j) entry, x € GF(n,), x #
0, a;, &; € GF(n, ). Itis well known that B[x] is a Latin square of order n, on
2,, and moreover,

B(x) L B(y), x # y.

In particular B(1), B(x) and B(y) form an O(n,, 3). Note that the n, entries
in B(x) and B(y) corresponding to the n, entries equal to k, in B(1),i.e., a; +
o; = k € GF(n,), form a common transversal for B(x) and B(y). Call this
transversal k. As k runs over all the elements of GF(n,), n; common
transversals are obtained for B(x) and B(y). Moreover, two common
transversals k and , k # I, are parallel. Thus n, common parallel trans-
versals in B(x) and B(y) have been located and named.
Consider the following two n X n, n = ny + ny, n, < n, squares

B(x) B(y)
Cx) = ) =

Project the transversal s in B(x) vertically and horizontally on an arbitrary
row and column of C(x). Call the resulting square C’(x). Also project the
transversal ¢ in B(y) vertically and horizontally on the same row and
column numbers of C(y). Call the resulting square C'(y). The following two
lemmas characterize the 2n, ordered pairs obtained upon superposition of
C’(x) on C'(y) corresponding to the projected transversals s and 7.

LEMMA 4.1.  The set of n, ordered pairs resulted from the superposition
of the vertical projection of the transversal s in B(x) and transversal t in B(y)
Jorms the same set of ordered pairs as obtained by superposition of the
transversal k,(x, y, s, t) in B(x) and in B(y) for
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@) kys =[xl —p) — (1 — DVx — ). x # .

Proof. The entries of the transversal s in B(x) and the transversal 7 in
B(y) respectively read

xa,~+aj,a,-+aj—_-s
Yo + o, 0 + o = t.
Upon vertical projection of these transversals the n; entries respectively
read as
x(s — aj) + aj and y(t - (xj) -+ aj.

Therefore upon superposition of these projected transversals the following
n, pairs are obtained

“4.2) (xG—a) + o,y —a) +0a;),j=12...,n.
Now let o] and a; be such that
k,(x, 5,510 =a+ a.

Upon superposition of transversal k,(x, y, s, f) in B(x) and B(y) one obtains
the following n, pairs

(4.3) (xaj + af, yaj + af).
Equating (4.2) to (4.3) results in
x(s — @) + a; = xa; + o
Wt — o) + ;= yai + &
which yields the following solution for &, (x, y, s, £).
ko (%, 3, 8 8) = Isx(1 = y) = ty(1 — 0)}/(x — y)

Note that if in particular x = y~' the following simple expression for
k,(»~% y, 5, £) holds:
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(4.4) kO™hp 50 =W+ 9/ +)),
which will be denoted by k, (y, s, ) for simplicity.

LEMMA 4.2.  The set of n, ordered pairs resulted from the superposition
of the horizontal projection of the transversal s in B(x) and transversal t in
B(y) forms the same set of ordered pairs as obtained by superposition of the
transversal k(x, y, s, t) in B(x) and in B(y) for

@5  kGps =[x —1) —s¢ — D/ -y, x # 3.

The proof is analogous to the proof of Lemma 4.1.
If, in particular, x = y~' the expression (4.5) reduces to the following
simple expression

(4.6) knO7h s ) = (v + 0/ +)),
which will be denoted by k,(y, s, ?) for simplicity.

ReEMARK 4.1.

@D kns) + ks = (+s) + U —(jc)fxij)_ -

s+t if x=y°L

ReMARrk 4.2. To simplify the detailed descriptions of Lemmas 4.1
and 4.2, they are referred to in the following forms:

(i) The vertical projection of the transversal s in B(x) and the trans-
versal ¢ in B(y) will jointly capture the transversal &, (x, y, s, ) as given in
4.1).

(i) The horizontal projection of the transversal s in B(x) and the
transversal 7 in B(y) will jointly capture the transversal k, (x, y, s, f) as given
in (4.5).

5. An application of sum composition for the construction of sets of
orthogonal Latin squares. In order to construct an O(n, 2) forn = n, +
n,, we require that n; = 2n, and there should exist an O(n,, 2) and an O(n,,
2) with 2n, common parallel transversals. In this section, due to some
combinatorial difficulties, the case n, = 1 is excluded even though an O(1,
2) exists. The above requirements eliminate the arbitrary decomposition of
ninto n; and n,, for instance, exclude n, = 2 or 6. Thus the range of n,is 3 <
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ny < [n, /2]. The following lemma guarantees that for any n = 10 there is at
least one decomposition of n which fulfills the preceding requirements.

LeMMA 5.1, For any n = 10 there exists a decomposition n = n, + n,
with the property that the existence of an O(n,, 2) and an O(n,, 2) with at
least 2n, common parallel transversals is guaranteed.

Proof. Itis a well known fact in number theory that any n = 10 can
be decomposed into n; + n,, n; = p% p a prime and a a positive integer, n,
= 2my, ny = 3, n, # 6. Itis also well known that for any n, = p® there is an
O(n,, n; — 1). These together with the fact that for any n, # 2, 6 thereis an
O(n,, 2), complete the proof.

Nowletn = n; + n,,n =10, n; = p*, n, = 3, n, # 6 and ny = 2n,. Let
B(x)and B(y), x # 1,y # 1, x # y, be two Latin squares of order n; on X,
= GF(n;). Also let {4,, A,} be an O(n,, 2) on 2, of cardinality #, such
that 3, N 2, = ¢. Let  be a set of 2n, parallel transversals for {B(x),
B(y)}. Note that  can be constructed in (7, ) different ways. Decompose &
into two nonintersecting sets S and 7T each of cardinality n,. Let L, be any
Latin square of order n; + n, constructed by sum composition of B(x) and
A, using the transversals in S (see §3). Let L, be any Latin square of order
ny +4- n, constructed by sum composition of B( y) and 4,, using the trans-
versals in 7. The following lemma constitutes the backbone of the re-
mainder of this section.

LemMa 52. {L,, L,} is an O(n, 2) if K, U K, = Q, where K, and
K, denote the sets of captured transversals on rows and columns respectively.

Proof. Upon superposition of L, on L, the following is true:

(1) Every element of =, in L, appears with every other element of =,
in L,, due to the fact that 4; 1 A4, in the lower right corner.

(i) Every element of 3,in L, appears with every element of =,in L,
because the entries of the transversals in S have been replaced by the
elements of =,.

(iii) Everyelementof 2, in L, appears with every element of 2,in L,
because the entries of the transversals in 7 have been replaced by the
elements of =, .

Therefore, all that has to be shown is that every element of
2, in L, appears with every other element of 2, in L,. To prove this, recall
that B(x) L B(y). However, after removal of the n, transversals in B(x)
determined by the n, elements of S, and n, transversals in B( y) determined
by the n, elements of 7, the following 2n, n, pairs have been lost:
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(xa; + o, ya; + ;) witha; + a; =y € Q.

But the condition of the lemma guarantees the capture of these lost pairs by
the 2n, n; border cells.

The following example elucidates Lemma 5.1.
ExampLES.l. Letn = 10 = 7 4+ 3 with
2,=GF(1) =1{0,1223456} and Z,= {789}

Setx = 2,_y = 5. Then

0123456 0123456
2345601 56012314
4560123 3456012
B2)y=6012345,B5=1234560
1234560 6012345
3456012 4560123
5601234 2345601

In order to locate the common parallel transversals in B(x) and B(y) the
square B(1) is exhibited below:

0123456
1234560
2345601
B(l)= 3456012
4560123
5601234
6012345
Let also
789 789
A= 897 ,4,= 9738
978 897

Select 2 = {0,1,2,3,45}and Q2 =S U T={0, 1,3} U {2,4 5}. Now
notice that for the following pairing of s’ and ¢’s
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k,(x, 9,81 =k, (2551 =5fors=0,t=4,
=4d4fors=1t=2,
=2fors=3,t=25,

and ,
kn(x, 9,80 =k, (2,551 =1fors =0,1 =4,
=3fors=1Lt=2,
=0fors =3 ¢t=>5.

Therefore for these pairings, K, = {5, 4,2} and K, = {1, 3, 0}, and thus X,
U K, = Q. Here K, = T and K, = S. But in general there is no such
requirement.

Now assembling all the parts L, and L, become:

7829456[013 0193786[425
8395607|124 5907834|162
4960178235 9478012536
9012785346 1784569203
L= {1237869|450|apdr,[7812395[(640
3478092[561 8560927(314
5781934(602 2349678[051
06543217809 6251403[789
2106543897 3625140/978
6543210[978 4036251[897

The reader can satisfy his curiosity by direct checking that L, and L, is
a pair of orthogonal Latin squares of order 10.

REMARK 5.2 The major problems with regard to the construction of
an O(n, 2) via sum composition are the following:

(i) Choice of x and y. It is found that y = x~' simplifies the cal-
culations considerably.

(ii) Selection of the set £ from the (2;,) possible choices.

(i) Splitting of € into SU T.

(iv) Projection (vertically and horizontally) of the members of S and
T, in the formation of L, and L,, if possible, so that K, U K, = Q.
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A backward solution of the problem, especially in the case y = x~, is
easier, namely, devise any “admissible scheme” of capturing the members
of Q via vertical or horizontal projections. By an “admissible scheme” it is
meant one should never let

k,(x,y,5,f) =sort
or
ky(x,y,s,t) =sort,

since it is impossible to capture s or ¢ through the pair (s, ¢). Then the
problem reduces to solving a system of 2n, homogenous equations in 2n,
unknowns. The entries of the related matrix are in terms of x and y. Now
the question is: for what x and y and in what finite field does this system
have a nontrivial solution with distinct components? Summing up the 2n,
equations, (Zs; — 2t;)(1 — xy)/(x — 1) = 0. This equation is independent
of either the value of n, or the finite field in which the equations are
supposed to hold. Thus the system of equations has no trivial solutions
provided that either xy = 1 or 3s; = Z¢,. This justifies further the relation
xy = 1 used here to simplify the calculations. However xy = 1 does not yet
solve the problem because, in addition, the solution has to consist of
distinct components. In cases investigated this leads to the reduction of the
rank to 2n, — 2 and consequently to a condition that y has to be a root of
some polynomial. Whenever the polynomial was of degree two the finite
fields in which the components of the solutions were distinct could be
characterized easily. The difficulties arose when y had to be a root of a
polynomial of degree higher than two since there are no readily available
tools to characterize such fields.

6. Construction of families of 0(n, + n,, 2) with the maximum value of
n,. As mentioned in §5 the maximum value that n, can take is [n, /2]. A
family of O(n, 2), n = n; + n, where n, takes its maximum value is
presented below.

THEOREM 6.1.  For any prime p and any positive integer a such that n,
= p* =1, ny # 13, one can construct an O(n, 2) with the sum composition of
an O(n,, 2) based on GF(n,) and any O(n,, 2) where n, = [n, /2]

Proof. (By construction.) Let 2, = GF(n,) and Z, be any set of
cardinality n, such that 2, N 3, = ¢. Let {B(x), B(»)} be an 0(r,, 2) based
on GF(n,) and {4,, 4,} any O(n,, 2) based on =,. Let A € GF(n;),A # 0
if nyis even. Let also @ = GF(n;) — {A/2} = S U T'such thatforany s €
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Sthereis¢ € T'such thats + ¢ = A. Construct a Latin square L, by the sum
composition of B(x) and A4, using any arbitrary vertical and horizontal
projections of the n, parallel transversals determined by the elements of S.
Now construct the Latin square L, by the sum composition of B(y), and 4,
using the n, transversals in B(y) determined by the elements of 7 and the
following projection rules: Project transversal 7; on the row (column)
which, upon superposition of L, on L,, falls on the row (column) stemming
from the transversal s; = A — ;. Now by (4.7)

ks +k(hs)=6+0+ ¢ -y — 1)/(x —)),

therefore if x = y~' then for s; # s,,

kv(.y: sh}\ - sl) # kv(,y’ $, A — s2)
and

kh()’, S5, A —51) # kh()’, 52, A — 53).

This implies that K, U K, has cardinality n, — 1 and K, U K, = ©, and
thus by Lemma 5.2 the set {L,, L, }isan O(n, 2) on =, U =,.

ReMARK 6.1. The method of Theorem 6.1 fails for n, = 13 only
because there is no O(6, 2). Otherwise, there will be no orthogonality
contradiction on the other parts of L, and L, with their 6 X 6 lower right
corner missing.

COROLLARY 6.1.  The method of Theorem 6.1 produces infinitely many
pairs of orthogonal Latin squares each of order 4t + 2.

Proof. Letp = 7(mod 8) and &« odd, then p* = (8¢ + 5)/3 and thus #,
+ny, =4t + 2.

COROLLARY 6.2. If p* > 71, then the composed orthogonal Latin
squares in Theorem 6.1 have at least cne common transversal if the corner
O(n,, 2) has a common transversal.

Proof. The original O( p® 2) has p* common parallel transversals.
Therefore after removing p* — 1 common parallel transversals there is still
one common transversal in the corresponding portion of O( p° 2) in the
composed O(n, 2). This common transversal together with the assumed
common transversal in the lower right corner O(n,, 2) form a common
transversal for the composed O(n, 2). The reason for the exclusion of p* =

7 is the fact that no O(3, 2) with a common transversal exists (see Lemma
2.2).
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ReMARK 6.2 O(n, 2) with common parallel transversals have an
application for the construction of a family of designs for two successive
experiments (see Hedayat, Parker and Federer [7]).

The method of Theorem 6.1 will be clarified now by two examples, one
for n, odd and one for n, even.

ExamMpLE6.l. Letn, =7,GF(7) = {0,1,...,6}.Thenfory =3, x =
»y~! = 5 wehave {B(1), B(5), B3)} =

0123456 0123456 0123456
1234560 5601234 3456012
2345601 3456012 6012345
3456012 1234560 2345601
4560123 6012345 5601234
5601234 4560123 1234560
6012345 2345601 4560123
Forn, = (n; — 1)/2,1et 2, = {7, 8,9} and

789 789

{4,,4,} = 897 ,978

978 897

Finally forA = 1,8 = {1,2,3} and T = {0, 6, 5} we have {L,, L,} =

0789456|123 7123498[0635
7891234[{560 3456987(210
8956017|234 6019875{432
92345781601 23987011654
6012789345 59872341106
4567893|012 98745601321
23789011456 8760129543
5140362789 0531642(78)9
3625140897 420531 9738
1403625(978 1642053897

which is an 0(10, 2).
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, 7} with the following

o1 ..

ExaMPLE 6.2. Let n, = 8, GF(8)
addition (4 ) and multiplication (X ) tables:

SOt Nt Nn\O
OO~ N
OO <
OO~
SnNntTWnO~S—A
SANNTWN\OI~
S AN WO
CSOOOCOOOO

x1012345617

O = NNt N\

N0~ O
NN~~~ O
N FTONO N
TN —OAN~\O
NI O—=O0ONnNA
ANOO~-IN<tr—on
~—~OoVvtTonr-~Aawn
O ANNF WO~

+1012345617

SNt Wn O~

6, {B(1), B(6), B(3)}

:_y—l

Then fory = 3, x

012345617
34701652

012345617
62157304
75326140

01234567
10643725
26075413

43510276
57462031

10643725,
26075413

34701652,

62157304
75326140

43510276
57462031

34701652

43510276 10643725

57462031

62157304
75326140

26075413

{4, B, C, D} and

4, let 22 =

Fornz = n|/2

AR
LN A
QAL
<LAM

Quaw
OQ A
Q_ATAO
TR0 Q

{4,,4,}
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Finally for A =2, S = {0, 1,3,4},and T = {2, 6, 7, 5} one obtains
{L, L,} =

AB2CD567|0134 01A434DBC 26175
BA1DC304(2675 34B01CAD|5762
75426 DBC|3401 AB5CD276[4310
CD6 AB725|4310 57C62BDA|1043
DCOBA413[5762 62D57ACB|[3401
34D01ACB|6257 DC3BA140|6257
43B10CAD|7526 BA6DC725(0134
57C62BDA|1043 CDO AB413|7526
02345671|4BCD 40276351|ABCD
61573042|BaDC 13725064|CDAB
16437250|CDAB 25413607|DCBA
20754136|!DCB 4 76140532/B4DC
which is an 0(12, 2).

7. Construction of families of 0(n, + n,, 2) with the minimum value of
;. Presently the problem of the construction of a set O(n, 2) forn = n; + 3,
n; = p% p a prime greater than or equal to seven and « a positive integer
will be investigated. It is clearly sufficient to show that the construction can
be achieved for any p = 7. The proof can then be carried over to any n, =

P

As before let B(1), B(x), and B(y) be three orthogonal Latin squares
with elements in GF(n, ).

Let S = {51, 5, 53}, T = {t;, t,, 3} denote sets of transversals
projected from B(x) and B(y) respectively.

The problem faced now is, can one choose the sets S and T in such a
manner that the ranges of the two functions &, (x, y, 5;, ;) and k, (x, , 5:, t;)
fori j = 1, 2, 3 exhaust the sets S U T, and if so in what way, if any, does
the choice depend on x and y? This leads to the problem, how many distinct
systems of choices are possible? Reducing the problem to nonisomorphic
cases two cases are considered “distinct” if they cannot be obtained from
each other by interchanging the squares, transposing both squares, or
permuting the elements within each of the sets S or 7. Thus it may be
assumed that i = j for one of the functions, say &, (x, , s;, 1;), since this can
be achieved by permuting the elements of one of the sets S or T. Further-
more it is assumed that the range of the function &, (x, y, s;, ;) consists of
either two or three elements of the set S. Cases in which the range includes
none or one element of S can be obtained from the above by interchang-



SUM COMPOSITION OF LATIN SQUARES 101

ing the sets S and T and the functions k, and k. To facilitate the notation
the arguments x and y will be omitted in the present considerations.

In view of the above, there are just four distinct patterns for the range
of k,(s, ?). They are:

1 11 111 v
kGi,th)=5 kG,.t)=5 k@E,.t)=s kG,H)=5
ky(sp;, ) =53 k(s )=53 k(s ) =155 k(5 8H)=15
kv(slb t3) =5 .kv(slb t3) =1 kv(sib t3) =0h kv(sib t3) =1

For each of these patterns there are twelve distinct possibilities for the
range of k;(s;, ¢;). Thus there are a total of 48 cases to be considered.

In [8] it was assumed that xy = 1. This seemed to simplify the calcu-
lations. Ruiz and Seiden [9] showed that a necessary and sufficient condi-
tion for obtaining nontrivial solutions for the systems of equations arising
in the method of sum composition is either =s5; = =1, or xy = 1. They also
showed that for patterns II, III and IV the elements of § U T cannot be
distinct unless xy = 1.

It is shown here that under the assumption xy = 1 one cannot con-
struct a set O(n; + 3, 2) for some primes, n,, of the form 60m + 11 or 60m +
59. However using pattern I and another relation between x and y this gap
can be bridged.

All 48 distinct systems of equations will be investigated below under
the assumption xy = 1. This assumption, as mentioned before, reduces the
rank of the system to at most five. However imposing the additional
condition that the solutions must be distinct reduces the rank in all cases to
at most four and yields a condition that y must be a root of certain
equations. There are cases in which y has to satisfy either the equation y =
Oory = 1. Clearly this is incompatible with the condition xy = 1, x # y. In
other cases the problem reduces to solving either a quadratic or a fourth-
degree equation in y in a Galois field. The cases of quadratic equations,
however, can be easily analyzed. The latter helps in establishing that if xy
= 1, there are primes for which a set O(n, + 3, 2) cannot be constructed.

The cases in which y has to be a root of a quadratic equation separate
the primes for which a set O(n, + 3, 2) can be constructed into four classes,
not necessarily disjoint. These are such that either — 1, —2, —3, or — 15 are
quadratic residues in GF(n;). A representative pattern for each of these
classes is presented.



102 A. HEDAYAT AND E. SEIDEN

Case 1.
k,(s1,8) =5, ki(si, 1) = £
k,(s2, 1) = 53 ki(sy, ) =13
k,(s3,83) = 53 ki(ss, 1) = 4.

This system will be of rank four and will exhaust the elements of the set §
U T provided that y is a root of the equation 2y* 4+ 3y + 3 = 0. Hence y =
(=3 £ \/—15)/4, and the system will have solutions provided that either
—3 and 5 or —5 and 3 are quadratic residues mod p.

A system of solutions is:

si=(+y+ D= y(y+ D

Hh=—-y+(y+ Dy

ss=8/(y+D+yu/(y+ 1)

L=+ +00/(+ ) - +y =Dy + D

—

Case 2.
k,(s1, 1) = 5 kw(si, ) =13
k,(s2, 1) = 53 kiw(sa, 1) = 51
k,(s3,3) =1, ki(s3, 3) =1,

For this system to be solvable and exhaust the set S U T, y has to be a root
of the equation )* + y + 1 = 0,i.e., —3 has to be quadratic residue, i.e. p
has to be of the form 6m + 1. The following forms a system of solutions:

si= =853/ (y+ D+ (+26/(y+1)
;= + Ds;/(y+ 1) —yt;/(y + 1)
h=s/(y+D+y/(y+1)
L=ys3;/p+1)+86/(p+ 1.

Case 3.
k,(si,8)) =5, ki(si, 1) =1
k,(s2, &) = 53 ky(sy, 1) = 8
k,(s3,83) =1, ki(ss, 13) =1,

This system will be of rank four and the solutions will exhaust the set SU T
provided that y is a root of the equation 2y* + 1 = 0, i.e., —2is a quadratic
residue of p = 8m + 1 or8m + 3.

A system of solutions is:
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ss=ys1+ (1 — p)s,
t=2ps; — 2y — Ds,
L=~0+ys —ps,
= (1 + 2p)s; — 2ps,.

Case 4.
k,(si, ) =5 ku(si, ) = t3
k,(s2, 1) = 83 ki(s2, 13) = 5
k,(s3,3) =1 ki(ss, 1) = t,.

This system will be of rank four and exhaust the set S U T provided that y?
+ 1 = 0,ie., —1has to be a quadratic residue or p = 4m + 1.
A system of solutions is:

sS,=5/(y+D+y/(y+ 1)
h=-s/(y+D)—- —y-Du/(+1)
s=/yy+D++Du/(y+ 1)
L=ysi/(y+ 1) +yt,/(y+ 1)

Since case 4 captures all primes of the form 4m + 1 the problem is: Are
there primes of the form 4m + 3 which are not captured by the remaining
three cases? Case 3 captures all primes of the form 4m + 3 for m even. Case
2 captures primes of the form 4m + 3 for m odd, provided that they are also
of the form 6m + 1. Hence cases 2, 3 and 4 omit primes of the form 12m +
11 for m odd. Case 1 captures two families of these primes, provided that
they are also of the form 60m + 23 = 12(5m + 1) + 11 or 60m + 47 =
12(S5m + 3) + 11. Thus none of the four cases capture primes of the form
12(5m + 2) + 11 or 12(5m + 4) + 11.

The next question asked is whether the failure to capture the above
mentioned primes is due to the restriction xy = 1? Could one, assuming xy
# 1 but Zs5; = Z¢;, supplement the missing primes? The answer is in the
affirmative.

Itis shown that keeping the assumption xy = 1, one may capture some
but not all of the missing primes. As mentioned before some of the 48 cases
lead to conditions that y has to satisfy a fourth degree equation. There are
five equations of degree four as follows:

Ly +2+3+y+1=0
29+ +3+3y+2=0
343+ 67 +5r+2=0
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4 ' +2+ 4> +4y+2=0
50 4+3+67+6y+3=0

Equations 4 and 5 cannot have a linear factor unless p is of the form 6m +
1 or 4m + 1 respectively. Hence these patterns cannot yield primes not
obtainable otherwise. It can also be seen that the set of primes which can be
captured by equations 1 and 2 are identical. Hence the problem reduces to
investigating one of the first two equations and equation 3. Using the high
speed computer facilities at Michigan State University it was found that
some but not all of the missing primes of the form 60m + 11 and 60m + 59
can be captured by these equations.

The first 10 primes of the two missing types of primes were investi-
gated. It was found that in GF(191) and GF(1319) both equations did not
have a linear factor and each of these primes is the smallest in its class.

It may be worthwhile mentioning that the number of solutions in the
cases investigated was the same for both equations. It is suspected that this
holds for all finite fields but we lack the tools to investigate the problem. We
would like to have a method to characterize finite fields in which equations
of degree greater than two have roots. This would prove very useful for our
further research on sum composition.

Failing to construct a set of O(n; + 3, 2) for n; of the form 60m + 11and
60m + 59 with the assumption xy = 1 it is natural to try to achieve, if
possible, this goal with the alternative Zs5; = Zt;. It will be shown that the
choice (1 — x)/(x — y) = 1 will prove sufficient to capture the missing
primes. Writing now case 1 in terms of x produces:

8§ = 2xs3 - (2x - l)t3 L = 2S1 —bh
§ = 2XSI - (2x - 1)t2 3 = 2S2 -4
§3 = 2x8, — (2x — Dty =25, —13.

This system will have rank four and yield distinct solutions for the un-
knowns provided that x satisfies the equation 4x* — 6x + 1 = 0. Hence x =
(3 £ 1/5)/4. Thus this system will capture all primes #, such that 5 is a
quadratic residue in GF(n,), i.e., n, is of the form 5m + 1 or 5m + 4.
Primes of the form 5m + 1 and 5m + 4 include primes of the form 60m +
11 and 60m + 59 respectively.

A system of solutions is:

s = 2xs53 — (2x — Dy

=25 — 13

L= 2(2x — 1)S3 — (4X - 3)t3

$; = (2x — 1)s3 — 2(x — Dt;.
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The result of the previous discussion can be summarized in the
following theorem.

THEOREM 7.1.  Using the method of sum composition it is possible to
construct a set O(p® + 3, 2) forallp =7.

It is emphasized that the method of construction depends on the form
of p but not on its specific value.

CoROLLARY 7.1. The method of Theorem 7.1 produces an infinite
Sfamily of O(n, 2) withn = 4t + 2.

ExampLE7.1. The pattern of case 3 can be applied to O(11, 2) to yield
aset O(14,2). It willresultinx =3,y =4and S = {0, 1,8}, T = {4,7, 3}

A B2 3 456 7 C910|0 18
B 456 7 89 CO0 1 42 310
6 7 8 910 0 C 2 3 4 B|4 51
910 01 2 C4 5 4 B38|6 73
1 23 4 ¢C6 7 4 B10 0|8 95
4 5 6 C8 9 4B1 2 31007
78 C10 0 4 B3 45 61129
10 ¢C1 2 4 B5 6 7 8 913 40
C 3 4 4B 78 910 0 1{S5 6 2
5 6 4B 910 01 2 3 C| 78 4
8 4 B 01 2 3 45 C 17|91 6
0 9 7 5 3 110 8 6 4 2| 48BC
3 110 8 6 4 2 0 9 7 5| B C 4
2 0 975 3 110 8 6 41 C A4 B
01 2 4B5 6 C 38 91| 4 7 3
4 5 4 B8 9 C0 1 2 3| 710 6
8 4 B0 1 C3 4 5 6 7(10 2 9
4 B3 4 C6 7 8 910 02 51
B 6 7 C 910 01 2 3 45 8 4
91 C1 2 3 45 6 A B| 8 0 7
2 C4 5 6 78 9 4B 1|0 310
cC7 8 910 0 1 4B 4 5|3 6 2
10 01 2 3 4 4B7 8 C|6 9 5
3 45 6 7 4 B10 0 C 2|9 1 8
7 8 910 4 B2 3 CS5S 6|1 40
502107 419 6 3 08| 4B C
6 3 0 8 5 210 7 41 9| C 4 B
1 96 3 08 5 210 7 41 B C 4
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ReMARK 7.1. Forn < 100 of the form 4¢ + 2 there are three instances
where one can utilize either Theorem 6.1 or 7.1 to produce an O(#, 2). These
orders are 34, 46 and 70 which can be decomposed as follows:

34 =23 + 11or31 +3
46 =31 + 150r41 + 3
70 =47 + 23 0r67 4+ 3.

The natural question to ask now is in what direction should we extend
the research on construction of orthogonal Latin squares using the method
of sum composition? One obvious direction would be to investigate the
problem of construction of a set O(n, ¢) for + > 2. As a first step in this
direction it is necessary to extend the investigations beyond the extreme
values of n, (see §10). The next two smallest values are n, = 4, 5. As will be
seen, the composed orthogonal Latin squares for these values of n, have a
useful statistical application. These cases are considered in the following
two sections.

8. Construction of two families of O(n, + 4, 2). It is clear that an
exhaustive search for patterns, as was done for n, = 3, would be very
tedious. Preliminary investigations indicate that one could find patterns
which would yield a set O(n;, + 4, 2) forany n; = p*aslongasp = 1l and «
= 1. Here two families of 0(p* + 4, 2) for which either —1 or —2 are
quadratic residues in GF(p®) will be presented. For both families one has
to assume xy = 1 in order to obtain distinct solutions for the unknowns in
question.

Case 1.
k,(s1,0) =83 ki(si, ) =1t
k,(s2, 1) = 51 kn(sy, ) =14
ky(s3,83) = ky(ss, 1) = 54
ky(ss,t) = 5, ki(sa, t1) = s3.

This system of equations will have distinct solutions provided that 3y* + 2y
+ 1 = 0,1.e., —2 has to be quadratic residue or p has to be of the form 8m
+ 1or'8m + 3. A system of solutions in terms of ¢; and ¢; is:

si=yh+ (+ Dt s=(p+294-(y+ s
si=—(y—Du+yt3 L=2y+DH—-Q2y+ s
ss=(y+ Dty — yts ty= 2y + Dty — 2pt5.
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Case 2.
k,(si, 1) =1t kn(si, 1) = 5,
k,(s2, 1) = 5y ki(s2, 1) = ¢
ky(s3, ) =14 ki(s3, 1) = 4
k,(s4, 8) = 53 ki(sa, t4) = B.

Notice that the four equations of either lines one and two or three and four
form a loop. These loops will yield distinct solutions provided that y* + 1
= 0orp = 4m + 1. A system of solutions is:

L= +y0)/(y+1) tbh=_(3+yt)/(p+1
ss=+ys1))/y+ 1) ss= (3 + ys3)/(y + 1.

The following distinct values for the unknowns may be chosen:
s1=0H=1s5=1 -y and £ =)
Thus the following theorem is obtained.

THEOREM 8.1.  Using the method of sum composition it is possible to
construct a set O(p® + 4, 2) for all primes p of the form 4m + 1 or8m + 3, p
=1L

CoOROLLARY 8.1.  The composed O(p® + 4, 2) has at least 3 common
parallel transversals if p = 11 and at least 4 common parallel transversals if p
> 11

Proof. The original O(p®, 2) has p* common parallel transversals.
Since p* = 11, after removing 8 common parallel transversals there remain
at least 3 common parallel transversals in the corresponding portion of
O(p’, 2) in the composed O(p® + 4, 2). Now it is known that any O(4, 2) has
4 common parallel transversals. Thus any # < 4 common parallel trans-
versals of the corner O(4, 2) in the composed set along with any s common
parallel transversals in the portion corresponding to O(p®, 2) form three
common parallel transversals for the entire set.

ExaMpLE8.1. Byletting p = 11 one can construct an O(15, 2) via sum
composition of an O(11, 2) and an O(4, 2). Since p = 11 fallsin Case 1, then
y=8x=75={92832}and T = {0, 5, 1, 6}. Utilizing the projection
rules given in Case 1 the following O(15, 2) is obtained.
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8,8 ={0,11,9,4},and T = {], 3, 5, 10}. The detail of

5 x
construction is left to the reader.

ExampLE 8.2. Considering Case 2 and letting p = 13 one can con-

struct an O(17, 2) by sum composition of an O(13, 2) and an O(4, 2). In this

case y

Utilizing a different pattern than those considered here,

Ruiz and Seiden [9] have constructed a family of O(n, + 4,2), n; = 1, 2,

REMARK 8.1.
3(mod 7) using x = 2and y = 5 + \/—7)/4. One can show that the same

result can be obtained by starting with their pattern and assuming that xy

1.
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9. Construction of a family of O(n; + 5, 2). Consider the sum com-
position of O(p®, 2) based on GF(p*), p = 11 and on O(5, 2) based on a
system of projections and capturing of the lost transversals given by

k,(s1,8) = ts
kv(s2’ 12) =14
kv(sib t3) =0n
k,(ss,t3) = t3
ky(ss, ts) = s

ki(si, 1) =5,
ki(s2, 1) = 53
ki(s3, 13) = 54
ki (54, t4) = 55
ki(ss, ts) = 1.

It can be shown that this system has a solution with distinct components
only if xy = 1. Otherwise =s5; = 2¢;implies s, = ¢,. Using the condition xy
= 1 this system will yield a solution with distinct components only if y* + 4
= 0in GF(p). This implies that — 1 has to be a quadratic residue in GF(p),
i.e. p has to be of the form 4m + 1. This system of equations yields the
values for s;and ¢, i = 2, 3, 4, 5 in terms of s, and ¢, that may be expressed
as

ss=kn+ul/(y+1 L=[(y+2dun—-s1/(y+1)
ss=[y—=Dsi+201/(y+ 1) =[(y+3—-251/(y+ 1
ss=[y—2)1+31/(y+ 1) L=[(y+ b,y —-35]/(y+ 1)
ss=[(y=3)s+41/(y+ 1) ts=[yh + )/ (y+ D

For the choice of s; = 0 and #; = 1 the remaining components become

=1(y+1 L=(+2)/(y+1
s5=2/(y+ 1) =(+3)/(y+1
sa=3/(y+ 1) = +4/(y+1
ss=4/(y+ 1) ts=y/(y + 1)

It is easy to check that the ten values for the unknowns are distinct except
for p = 13, the smallest prime under consideration. Clearly the values of
the sets S and T separately are distinct. As to the differences between the
elements of the set S and T’

Ss-—t|:S4—t5:SZ'—S4:O

when y* = 9 or 13 = 0. For p = 13 one may use the example given in [8]
withx =2,y =78 =1{0,1,23,4} and T = {10, 11, 12, 13, 9}. In this
particular case the transvérsal s; should be projected on the (13 + i)th row
and column in the order written above, and similarly for the transversal ¢;.
Thus the following theorem is established.
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THEOREM 9.1.  Using the method of sum composition it is possible to
construct a set O(p® + 5, 2) for all p of the form 4m + 1, p = 13.

Note that the order of the composed Latin squares in Theorem 9.1 is of
the form 4¢ + 2.

COROLLARY 9.1.  The composed O(p* + 5, 2) has at least 3 common

parallel transversals if p = 13 and at least 5 common parallel transversals if p
> 13.

The proof is analogous to the proof of Corollary 8.1.

ExaMPLE9.1. Using the method of Theorem 9.1 a pair of orthogonal
Latin squares of order 18 = 13 + 5 and a pair of order 22 = 17 + 5can be
constructed. For p = 13, x, y, S and T are as above. Forp = 17

X = 2,y = 9, S = {0, 12, 7, 2, 14} and T = {1, 13, 8, 3, 6}.
The exhibition of these squares is left to the reader.

ReMARK 9.1. Forn = n; + n, < 100 and of the form 4¢ + 2 there are
two instances where we can construct an O(n, 2) by either Theorem 7.1 or
Theorem 9.1. They are 22 and 94, which can be decomposed in two
different ways,

22=19+30r17+5
94 =914+ 30r89 +5.

10. Continuation of research on the method of sum composition.
The results obtained in this paper suggest at least two directions for
the continuation of this research.

For the first direction the results of this paper are considered as a first
step in exploring the problem of construction of Latin squares and ortho-
gonal Latin squares via sum composition. It seems obvious that investi-
gating the problem of construction of orthogonal Latin squares for in-
creased values of n, will become overwhelming and uninspiring unless a
new method of attack can be found. One possibility may be to choose an
especially symmetric pattern which could be generalized to some sets of
values of n;,, say, of specific structure. It seems plausible that for a fixed n,,
one pattern could do for all primes conveniently changing the value of the
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function (1 — x)/(x — y). This amounts to giving up the assumption xy =
1. In fact that was done in order to complete the case O(n; + 3, 2) for all
primes.

There is another important reason to consider cases for which xy # 1.
O(n, 1) sets with ¢+ > 2 must allow cases of O(n, 2) constructed under the
assumption xy # 1. In such cases the assumption 2s; = 2f; = ¢ must
substitute the equality xy = 1. It is possible that one could enumerate the
solutions of O(n, 2) as a function of ¢. This would enable an exhaustive
search for mutually orthogonal Latin squares with or without the assump-
tion xy = 1. It may be worthwhile to illustrate this idea by an example
considered in [8]. There an exhaustive search was made for all sets of O(7 +
3,2)with S = {0, 1,3}, T = {2, 4, 5} with or without the condition xy = 1.
In this case =s; = 21, = 4 (mod 7). It is easy to show that for each of the
distinct elements of GF(7) there is just one available pair of {S, T} for
consideration. Hence, in total, consideration of seven pairs exhausts all
possible cases. For p = 7 all the sets are difference sets. The question now
arises: for which fields does this property hold, which could reduce the
search even further?

Concerning the second direction the following remarks appear sug-
gestive. If B(x) and B(y), x = y~' based on Galois field GF(n) form an
O(n, 2), then it is impossible to construct an O(n + 1, 2) by sum composi-
tion of this O(n, 2) and a trivial pair of orthogonal Latin squares of order
unity. This forces S to be equal to 7, which can be seen by the fact that §
and T each contain only one element, say s and ¢, respectively. Now k, (s, £)
= (yt + s)(1 + y)~' will be equal to sor t only if = 5, but we require S N
T = ¢. However, with some modifications of the method of sum compo-
sition this can be done. Consider the following example:

012345678 012345678
136872054 257618430
267514830 564037281
385406217 743851062
471023586 608124753
524638701 135276804
608257143 871460325
753180462 420783516
840761325 386502147

These two Latin squares of order 9 are obviously not orthogonal.
However, all the cells on the main diagonals, or parallel to the main
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diagonals, form common parallel transversals. Now project the underlined
transversal in each square on the tenth row and column and replace the
corresponding cells with 9. Finally, add a 1 X 1 Latin square in the lower
right corner to obtain

912345678]0 012345678]9
196872054]3 95761843012
2695148307 5940372811|6
385906217)4 7498510623
47109358612 6089247531
5246397018 1352968047
6 08257943]1 8714693250
75318049216 42078391615
84076132915 38650219714
03742816519 26317054819

The reader can check for himself that these Latin squares of order 10 are
orthogonal. Note that these two orthogonal Latin squares have many
common transversals all sharing the lower right corner cell. These common
transversals can be located on the diagonals parallel to the main diagonal.
It is easy to show that this O(10, 2) is not isomorphic with our previous
O(10, 2) derived by composition of an O(7, 2) and an O(3, 2).

The preceding example indicates a possible modification of sum
composition method, viz, starting with non-orthogonal Latin squares. But
of course they should have certain combinatorial properties and this matter
is under investigation.

Before closing this section note that sum composition with Latin
squares of order unity has two important consequences. First, there is no
bound on the number of mutually orthogonal Latin squares of order unity.
Second, in the process of sum composition only two common parallel
transversals get lost for each composition. These characteristics are very
important if one hopes to construct a set consisting of more than two
orthogonal Latin squares by the sum composition method.

We wish to thank Mr. W. Allard for searching, with the aid of a high
speed computer, for roots of fourth degree equations in some GF(p).
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